Subseasonal and Seasonal Precipitation:
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How good are our predictions now?

How can we make better predictions?



(a) WEATHER FORECASTS
predictability comes from initial
atmospheric conditions

S2S PREDICTIONS

predictability comes from initial
atmospheric conditions, monitoring the
land/sealice conditions, the stratosphere

excellent and other sources

SEASONAL OUTLOOKS

predictability comes primarily from
QOOd sea-surface temperature conditions;
accuracy is dependent on ENSO state
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FORECAST RANGE
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from https://iri.columbia.edu/news/qa-subseasonal-prediction-project/



North American
Multi-model Ensemble (NMME)

* Varies in Space and Time
* Low over North America
* No significant improvement

from Becker, Kirtman, Pegion, 2020, GRL
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The Subseasonal
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from Pegion et al. 2019, BAMS



USER NEEDS
Reliable and actionable information for decision-making

SHORT MEDIUM EXTENDED LONG

RANGE RANGE RANGE (S2S) RANGE Th iS ti m esca | e i S
1-3 DAYS 3-10 DAYS 10-30 DAYS >30 DAYS used fo r p | a n n | ng

A flexible

SHORT- TO MEDIUM-RANGE LON G-RANGE
WEATHER-INFLUENCED ACTIONS WEATHER-INFLUENCED ACTIONS a p p rO a C h to
° issue warnings e start monitoring forecasts . . .
e distribute humanitarian aid ¢ update contingency plans k | |
e evacuation e inform strategic planning decisions a SS e SS I n g S I I n

space and time

S$2S WEATHER-INFLUENCED ACTIONS

e continue monitoring forecasts e supplement financial risk strategies

e update community warnings e inform loss scenarios

e initiate preparedness activities e update peak energy demand scenarios

* revise water allocations e pre-positioning of disaster response materials

* activate water conservation practices e implement irrigation, pesticide or fertilizer
schedules

from https://iri.columbia.edu/news/qa-subseasonal-prediction-project/
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Better skill when
averaged in space and
time

On average skill is still
relatively low

Explore other optimal
approaches [ 1))
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SubX Week 3-4 Total Precipitation Anomalies (mm); Valid 2 weeks ending OCT 19

MME (63 Ensemble Members)
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from Pegion et al. 2019, BAMS
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Hurricane Michael rainfall and path
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Can we find ways to identify, use, and quantify them?

There is anecdotal evidence of useful forecasts that would not be skillful using
traditional skill measures.




What is the
limit of
oredictability?

* Function of signal to noise:

2
o
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* Perfect model predictability

Assume: Model is perfect, only source of error
is initial condition uncertainty

Signal = estimated by the ensemble mean
Noise = estimated by the ensemble spread

S
g
LA _.-l |



We do not know the
upper limit of skill

Unrealistic estimates
Noise is large at these timescales

Understand predictability by
understanding signal
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Understand Sources & Impacts

Subseasonal

MJO
ENSO

Tropical Heating

Land Surface STRATOSPHERIC POLAR VORTEX

Weather Regimes
(Blocking/Storm Tracks
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from Lang, Pegion, Barnes, JGR Atmospheres 2020



MJO and ENSO

MJO and ENSO interact to impact CONUS
precipitation

Still have fundamental MJO errors in our
models (propagation, initiation)

How well do our models represent these
interactions and impacts on precipitation?

What about other MJO interactions (e.qg.
QBO, ARs)?

El Nino

MJO + EI Nino
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from Arcodia et al. 2020, JCLIM
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from Dias and Kiladis 2019, GRL

Tropical Heating
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Better tropical precip skill at short lead-times leads to
better subseasonal precip skill in NH.

Skill is still relatively low

How well could we predict tropical precipitation?
How much CONUS skill could we get from the tropics?~
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Weather Regimes

Pacific North America weather regimes predicted
to ~15 days and longer in certain cases.

There is a relationship between these regimes
and CONUS precipitation.

Can we represent that relationship and realize
this predictability ?
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2m Air Temperature
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from Dirmeyer et al. 2018, JGR-Atm
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Model errors in convection

Can we fix this in our prediction models?
If we fix it, how much skill improvement can we get?



How can we make better predictions?

rom predictabpility to prediction

Understand |
Source and
Impact
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Summary

* Currently skill is low on average
* We can’t measure all potentially useful forecasts

* Traditional skill metrics may be misleading

*  We don’t know for sure

* There are forecasts of opportunity
How can we make better predictions?
* Focus on forecasts of opportunity

* Better understand and model impacts of the sources of
predictability

* Acknowledge and quantify uncertainty
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